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A theoretical framework is developed to describe, in the limit of small but finite
Re, the evolution of dilute clusters of sedimenting particles. Here, Re = aU/ν is the
particle Reynolds number, where a is the radius of the spherical particle, U its settling
velocity, and ν the kinematic viscosity of the suspending fluid. The theory assumes
the disturbance velocity field at sufficiently large distances from a sedimenting
particle, even at small Re, to possess the familiar source–sink character; that is, the
momentum defect brought in via a narrow wake behind the particle is convected
radially outwards in the remaining directions. It is then argued that for spherical
clusters with sufficiently many particles, specifically with N much greater than
O(R0U/ν), the initial evolution is strongly influenced by wake-mediated interactions;
here, N is the total number of particles, and R0 is the initial cluster radius. As a result,
the cluster first evolves into a nearly planar configuration with an asymptotically
small aspect ratio of O(R0U/Nν), the plane of the cluster being perpendicular to the
direction of gravity; subsequent expansion occurs with an unchanged aspect ratio.
For relatively sparse clusters with N smaller than O(R0U/ν), the probability of wake
interactions remains negligible, and the cluster expands while retaining its spherical
shape. The long-time expansion in the former case, and that for all times in the latter
case, is driven by disturbance velocity fields produced by the particles outside their
wakes. The resulting interactions between particles are therefore mutually repulsive
with forces that obey an inverse-square law. The analysis presented describes cluster
evolution in this regime. A continuum representation is adopted with the clusters
being characterized by a number density field (n(r, t)), and a corresponding induced
velocity field (u(r, t)) arising on account of interactions. For both planar axisymmetric
clusters and spherical clusters with radial symmetry, the evolution equation admits
a similarity solution; either cluster expands self-similarly for long times. The number
density profiles at different times are functions of a similarity variable η =(r/t1/3),
r being the radial distance away from the cluster centre, and t the time. The radius
of the expanding cluster is found to be of the form Rcl(t) = A(νa)1/3N1/3t1/3, where
the constant of proportionality, A, is determined from an analytical solution of the
evolution equation; one finds A= 1.743 and 1.651 for planar and spherical clusters,
respectively. The number density profile in a planar axisymmetric cluster is also
obtained numerically as a solution of the initial value problem for a canonical
(Gaussian) initial condition. The numerical results compare well with theoretical
predictions, and demonstrate the asymptotic stability of the similarity solution in
two dimensions for long times, at least for axisymmetric initial conditions.
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1. Introduction
In this paper, the evolution of clusters of sedimenting spherical particles, on account

of hydrodynamic interactions, is examined analytically when the particle Reynolds
number, Re, is no longer identically zero. The Reynolds number is a dimensionless
measure of the importance of inertial effects at the micro (particle)-scale, and is
defined as Re = aU/ν; here a is the particle radius, U a characteristic velocity scale,
and ν the kinematic viscosity of the suspending fluid. Understanding the behaviour
of such inertial clusters is relevant to the dynamics of particulate gravity currents and
pyroclastic flows, and thence to the dispersion of pollutants and toxins. For instance,
the dynamics of particulate gravity currents, turbidity currents in oceanic basins for
example, is usually dominated by inertial and buoyancy forces, the latter arising
because the suspended particles are heavier than the ambient fluid. The buoyancy
forces that drive the current therefore evolve with time owing to the changing
concentration of particles. Typical models make the diluteness assumption, neglecting
interparticle hydrodynamic interactions. In addition, particles are assumed to settle
out of suspension at a rate given by their terminal settling velocity in the absence
of micro-scale inertia (see Hogg, Ungarish & Huppert 2001; Hogg, Hallworth &
Huppert 2005). Other potential industrial applications of this study include mixing
and combustion, bio-reactors, explosive ejecta etc., since, in many of these cases,
particle motion is dominated by inertial forces. Hydrodynamic interactions between
particles have been studied extensively in the quasi-steady inertialess limit (Re = 0),
both specifically in the context of cluster evolution, and otherwise (for instance, see
Happel & Brenner 1965; Kim & Karrila 1991; Brady & Bossis 1988); there has been
limited progress, however, in analysing more complicated scenarios prevalent at finite
Re.

In our study, we assume Re to be small but finite, where U in the definition of
Re may now be taken as the single-particle settling velocity in a quiescent fluid.
In the interests of analytical tractability, the cluster is assumed to be dilute; more
precisely, the interparticle separation is much greater than the inertial screening
length (ν/U = aRe−1 for Re � 1). The latter is the length scale at which convection
of momentum becomes comparable to viscous diffusion, and changes the rate of
decay of the disturbance velocity field. The above assumption simplifies the algebraic
form of the inertial interactions, while still retaining the basic physics, and allows a
quasi-steady evolution of the cluster even at finite Re. As originally shown by Oseen
(see Batchelor (1967)), the simplified velocity field at large distances comprises an
O(1/r2) irrotational source flow everywhere, r being the distance from the particle,
except in a narrow wake behind the particle, where viscous effects remain significant;
here, the velocity disturbance continues to decay as 1/r , leading to a viscous drag on
the particle.

Further, the detailed analysis is restricted to clusters where the probability of
wake-mediated interactions between particles remains asymptotically small. Physical
arguments show that, for initially spherical clusters with radii smaller than O(Nν/U )
(N being the number of particles comprising the cluster), the above restriction implies
that the analysis becomes valid only after an initial period during which the cluster
evolves towards a nearly planar configuration primarily on account of wake-mediated
interactions. Spherical clusters with radii larger than O(Nν/U ), on the other hand, are
unaffected by wake interactions, and expand without deformation. Thus, the analysis
offers a quantitative description of evolving spherical and planar clusters in the limit
where the inertial interaction fields within the sedimenting cluster are isotropic and
repulsive. These simplifications, whose physical significance is discussed in more detail
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below, enable one to rigorously examine the effects of fluid inertia on cluster evolution
in a simpler setting. This should then serve as a first step in the quantitative study of
general three-dimensional particle clusters at finite Re.

Earlier studies of the effects of hydrodynamic interactions on the dynamics of
sedimenting clusters have been carried out in the absence of inertia, for instance,
those of Nitsche & Batchelor (1997) and Machu et al. (2001). Therefore, both Re, and
the Reynolds number of the cluster, defined as Recl = UclRcl/ν, are identically zero;
here, Ucl is the mean settling velocity of the cluster, and Rcl a measure of its size. In
comparison, the dilute clusters analysed in our study sediment with a mean velocity
of the same order as that of a single particle (Ucl ≈ U ), the cluster dimension (Rcl)
being much larger than aRe−1. Thus, although Re � 1, we have Recl � 1. Nitsche &
Batchelor (1997) examined the temporal evolution of an initially spherical inertialess
suspension blob sedimenting in a quiescent fluid. The blob was found to retain its
initial shape to a good approximation, while leaking particles from its rear in a
vertical tail that eventually led to its breakup. Notwithstanding the small slip due to
gravity of the particle phase, the flow around the suspension blob is, in fact, similar
to that around a similar liquid drop with the same effective density, again in the
absence of inertia (Batchelor 1974). The hydrodynamic interactions between particles
in the blob, however, cause them to occasionally cross over into the particle-free liquid
region, leading to their being swept around to the rear, and thence giving rise to the
aforementioned tail.

This analogy between the behaviour of liquid drops and suspension blobs was
formally proven by Machu et al. (2001) in the limit where the particles in the
suspension blob are finely dispersed, and in addition, their distribution in the evolving
blob remains statistically uniform; the latter was shown to be true in the simulations
carried out. The sedimenting suspension drops remained spherical for an initial
length of time, but eventually formed a torus that underwent breakup into two or
more drops in a repeating cascade. This cascade is again similar to that known for
a liquid drop settling in a second miscible liquid at low Reynolds numbers. The
sequence of events leading to eventual breakup was found to be relatively insensitive
to the initial shape of the suspension blob. More recent investigations report similar
results (see Ekiel-Jezewska, Metzger & Guazzelli 2006; Metzger, Nicolas & Guazzelli
2007). In the above investigations, particles were treated as point forces (Stokeslets)
and only the O(1/r) far-field hydrodynamic interactions were included in an attempt
to approximate dilute clusters.

The constraint of a dilute cluster is also necessary in the presence of inertia, since
a rigorous treatment of multi-particle hydrodynamic interactions at small but finite
Re is extremely difficult owing both to the nonlinearity and unsteady nature of
the governing equations. The former does not allow superposition of independent
solutions, for instance, and the latter implies a history dependence. Thus, even with
the known velocity field around a single translating particle in the limit of weak
inertia, the interaction between any pair of particles at finite Re at any instant of
time is far more involved, being, in principle, dependent on the entire time history
leading up to the current system configuration (see Koch 1993; Koch & Hill 2001).
The effects of hydrodynamic interactions in the context of homogeneous sedimenting
suspensions of spherical particles have been recently examined by Yin & Koch (2007).
In the dilute limit, however, well-separated particles interact with each other only via
weak disturbance velocity fields; it may be shown then that the time scale for a
change in the particle configuration on account of interactions is much greater than
the time taken for the vorticity to diffuse a distance comparable to the screening
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length, and a quasi-steady scenario prevails even at non-zero Re. Similar reasoning
suggests that inertia of the particles is also unimportant. Thus, each particle in a
sufficiently dilute cluster is, in essence, passively convected by the disturbance velocity
fields due to all other particles, and the characterization of cluster evolution reduces
to drawing inferences about the kinematics of a group of tracer particles, each of
which moves with the sum of its terminal settling velocity and the fluid velocity
disturbances produced by the other particles.

The representation of a dilute cluster of any radius by a swarm of Stokeslets
for sufficiently small Re, as has been the case in earlier studies, is incorrect. Such
a representation is valid only when the inertial screening length is much smaller
than the cluster size, because, for any finite Re, the fore–aft-symmetric Stokes
approximation for the single-particle velocity disturbance is not a uniformly valid
one in an unbounded fluid domain. It breaks down at length scales of O(aRe−1) or
greater when convection of the momentum defect can no longer be neglected. As
indicated above, the velocity field at larger distances has an asymmetric source–wake
structure. Since the nature of the velocity field differs radically in regions within and
outside a distance of O(aRe−1), even the evolution of a dilute cluster must be a strong
function of its size relative to aRe−1.

In order to determine the critical cluster size at which inertia becomes important,
we first consider the opposite limit, that is, Recl � 1. Hydrodynamic interactions in
the entire cluster are now dominated by viscous forces, and the cluster settles with a
velocity Ucl ∼ R2

clφ(ρp −ρf )g/µ, where φ is the volume fraction of particles within the
cluster. With Rcl � aφ−1/2, the slip velocities of the individual particles are negligible
when compared with the cluster velocity, and one anticipates a continuum description
to be valid. Recall that the cluster Reynolds number is defined as Recl = UclRcl/ν, and
one therefore obtains Recl ∼ (Rcl/a)3φRe. The condition Recl � 1 is evidently satisfied
for any finite-sized cluster when Re =0. The cluster behaves as a drop (see Nitsche
& Batchelor 1997) with the constituent particles circulating in a familiar toroidal
pattern. Thus, the fluctuation velocity of any particle (relative to its slip velocity U )
will be O(Ucl). Note that a pair of sedimenting spheres maintain a constant relative
separation at Re = 0 (see Happel & Brenner 1965), a fact related to the reversibility
of the governing Stokes equations. Thus, the aforementioned drop-like dynamics and
the resulting fluctuating velocities are a consequence of multi-particle interactions.

For Re small but finite, the spheres a pair move relative to each other even for
separations smaller than O(aRe−1). The Stokes equations being a valid leading-
order approximation in this region, this relative velocity is only O(Re). The relative
velocity of a pair of particles separated by a distance r may be estimated from
the far-field behaviour of the O(Re) correction u1 to the Stokes velocity field (us).
Since a � r � aRe−1, u1 is obtained from a regular perturbation expansion, and
satisfies µ∇2u1 − ∇p1 ≈ ρ U · ∇us for r � a; since us ∼ U (a/r) for r � a, one obtains
u1 ∼ (ρU/µ) r2(Ua/r2). Thus, the relative velocity of a particle pair, separated by
a distance smaller than aRe−1, is O(ReU ), and is such that a pair of particles in
a transverse plane repel each other (Bretherton 1964). The velocity of a particle
on account of all such inertial pair interactions is φ (Rcl/a)3ReU . The fluctuation
velocity on account of inertialess multi-particle interactions is still O(Ucl) for small
Re. Equating the estimate for the fluctuation velocity due to inertial pair-interactions
to the Stokes estimate, one obtains Rcl ∼ aRe−1 for the critical cluster size when
‘micro-scale’ inertia first becomes important. This is, in fact, a natural consequence
of assuming inertial interactions to be pairwise additive in the dilute limit. Thus, the
dominance of ‘sub-screening length’ inertial interactions will accompany a gradual
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transition to pair-hydrodynamic interactions mediated by source–sink velocity fields.
Both these interactions are described by the Oseen equations, and may be termed
‘Oseen interactions’, since these equations provide a uniformly valid approximation
to O(Re) in the region r � a. Oseen interactions are therefore expected to play a role
in the evolution of sedimenting clusters with sizes comparable to or larger than the
inertial screening length.

In the light of the above scaling arguments, an initially spherical cluster of size
aφ−1/2 � Rcl � aRe−1 should behave as a drop, preserving its initial shape to a
good approximation during sedimentation†, while a cluster larger than the critical
size is expected to immediately deform, growing rapidly in its lateral dimensions on
account of repulsive pair-particle interactions. Even in the suspension-drop regime,
however, a cluster settles increasingly rapidly with an increase in size, as is evident
from the expression for Ucl above. Eventually, the time taken for vorticity to diffuse
across the cluster starts to become comparable to the time scale associated with the
sedimentation of the cluster, and also the motion of particles within it. In other
words, inertia on the scale of the cluster becomes important for large enough clusters.
Comparison of the two time scales gives a critical cluster size of O(aRe−1/3φ−1/3)
for transition to a regime dominated by ‘macro-scale’ inertia. When Re � φ1/2, one
has aφ−1/2 � aRe−1/3φ−1/3 � aRe−1, and the sedimenting cluster must first transition
from the suspension-drop regime to a regime dominated by macro-scale inertia when
Rcl ∼ aRe−1/3φ−1/3 (or Recl ∼ O(1)); a second transition to a regime dominated by
micro-scale inertia, discussed above, occurs when Rcl ∼ aRe−1. On the other hand,
for Re � φ1/2, aφ−1/2 � aRe−1/3φ1/3 � aRe−1, and both the suspension drop and the
intermediate macro-scale inertia regimes disappear.

For clusters with Rcl < aφ−1/2 for Re <φ1/2, and those with Rcl < aRe−1 for
Re >φ1/2, the slip velocity of a single particle is dominant, being larger than the
induced velocity due to interaction with other particles in the cluster. These clusters
do not exhibit the drop-like dynamics expected in the inertialess continuum limit, and
may therefore be termed as sub-continnum clusters. Eventually, with increasing Re
or Rcl , there is a transition to the regime studied in this paper wherein Oseen pair
interactions determine cluster evolution. These transitions are summarized in figure 1.
A naive extension of the Stokes drop analogy would have led one to conclude that
sedimenting clusters at finite Recl should behave in a manner akin to miscible drops
at the same Reynolds number. The scaling analysis emphasizes, however, that such
a regime exists only in the limit Re � φ1/2. Finally, it is worth noting that with the
onset of Oseen interactions, the velocity disturbance field driving the pair interaction
decays with increasing distance. Correspondingly, pair interactions begin to weaken
for separations greater than a screening length, the time scale for a change in the
particle configuration increases, and clusters larger than O(aRe−1) should continue
to evolve in a quasi-steady fashion.

In general, a sedimenting cluster is expected to become increasingly dilute both via
a continuous shedding of particles from its rear, and on account of an increase in size
due to repulsive inertial pair-particle interactions. The former has been observed even
in simulations carried out in the viscous-dominated regime namely. Re =Recl =0
(see, Nitsche & Batchelor (1997)). As an example of the latter, even a cluster in the
suspension drop regime must deform at any finite Re; of course, for Rcl � aRe−1,

† The inevitable breakup of a Stokes sedimenting cluster, and subsequent formation of a torus,
happens only after the cluster has settled through a rather long distance of the order of 30 times
its own size (see Machu et al. 2001).
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Stokes suspension drop

Macro-scale-inertia dominated

Oseen-interactions dominant

Sub-continuum clusters with
Stokes + O(Re) inertial interactions

ReRe = φ1/2

(Rcl/a) ~ Re –1

(Rcl/a) ~ Re –1/3φ–1/3

Re = φ1/3

(Rcl/a) ~ φ–1/3

(Rcl/a) ~ φ–1/2
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a

Planar clusters

Spherical
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(Rcl/a) ~ Re1/2φ –1/2

Figure 1. The various regimes of evolution for a sedimenting cluster of particles as a function
of its size (Rcl), Re and φ (logarithmic scales). In the region corresponding to clusters dominated
by Oseen interactions, the line Rcl/a ∼ Re1/2φ−1/2 denotes the critical value of the initial cluster
radius separating distinct long-time evolution scenarios (see § 2).

the time scale for this deformation will be much longer than that required for the
cluster to sediment through a distance of the order of its own size. Therefore, the
Reynolds number Recl for any sedimenting cluster is expected to eventually become
large enough for interparticle interactions to be governed by the Oseen equations.

In this paper, we therefore study what is likely to be the asymptotic long-time
scenario for most sedimenting clusters: the quasi-steady evolution of a dilute ensemble
of sedimenting particles in the limit Recl � 1, wherein the motion of each particle
is governed by the Oseen-velocity fields due to all other particles in the cluster. The
evolution of such clusters may differ significantly depending on whether interparticle
interactions are dominated by the source (O(1/r2)) or the wake (O(1/r)) part of the
inertial velocity field. In the next section, we therefore present physical arguments
which help differentiate between clusters whose evolution is dominated by wake
interactions, and those that are driven by source–field interactions. The arguments
suggest that the dynamics of a dilute sedimenting cluster with Recl � 1 will eventually
be dominated by source–field interactions, but that the resulting expansion could
either be two-dimensional (in a plane transverse to gravity) or three-dimensional
depending on the radius of the initially spherical cluster. The critical cluster radius
below which the expansion begins to transition from a three-to a two-dimensional
one is found to be O(Nν/U ). In either case, however, the dependence of the cluster
size on N and t may easily be obtained by considering a particle at the edge of the
expanding cluster; the (outward)bvelocity arising from repulsive pair interactions in
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D dimensions is

dRcl/dt ≈
∫ Rcl

0

O(1/r2)n(r, t)rD−1dr,

where D =2 or 3, and n(r, t) is the appropriate number density in the evolving cluster.
Since the total number of particles N ∼

∫
n(r, t)rD−1dr remains constant, one may

write instead, dRcl/dt ∼ N/R2
cl , so the mean-square cluster size scales as R2

cl ∼ N2/3t2/3,
independent of D; in turn, this implies that the areal number density field in two
dimensions must be O(N/R2

cl) ≡ O(N1/3/t2/3), while the number density field in
three dimensions must be O(N/R3

cl) ≡ O(1/t). It is worth noting that the cluster
interactions in both cases are non-local, since the strength of interaction decays as
O(1/r2), while the number of such interactions grows as O(rD) with D � 2. For small
Re, the coefficient characterizing the strength of the source–field interactions may be
obtained from Oseen’s solution for the velocity field (see § 2). An analytical solution
of the evolution equation for the number density field, and thence the numerical
pre-factor in the expression for Rcl above, is readily obtained in three dimensions;
in two dimensions, the aforementioned non-locality renders the determination of
the numerical pre-factor particularly difficult. Nevertheless, the analysis predicts an
axisymmetric planar cluster, as well as a spherical cluster with radial symmetry, to
expand in a self-similar fashion, with the appropriate number density profiles being
functions of the similarity variable r/t1/3.

We now place our analysis in the context of previous related work on micro-
scale inertia, both theoretical and experimental. To begin with, we mention the work
of Vasseur & Cox (1977) who, via singular perturbation techniques, examined the
interaction of a pair of sedimenting particles both in an unbounded fluid and in
the presence of a plane boundary at small but finite Re. The separation between
the particles was assumed to be much larger than the inertial screening length. For
an unbounded fluid, their expression for the rate of separation of the spheres is
identical to that resulting from our simplistic source–sink approximation for the
far-field velocity disturbance field due to a single particle.

The earliest experiments on groups of settling particles are those of Jayaweera,
Mason & Slack (1964). Among other things, the authors examined the motion of
initially compact clusters of three or more spheres with Re ranging from 10−4 to
about 5. For Re < 1.5, clusters of three to six spheres were found to eventually
arrange themselves into regular polygons, oriented transversely to the direction of
gravity, that continue to expand at a decreasing rate as they sediment; clusters
of seven or more spheres exhibited no such regularizing tendency, however. A
theoretical analysis by Hocking (1964), based on the Stokes equations, showed a
regular polygonal arrangement of n spheres to be unstable for n> 7 in the limit
where the interparticle separation is much larger than the radius of a sphere. Other
results were left unexplained – for instance, the observed expansion of a sedimenting
regular polygonal array is clearly beyond the scope of the reversible Stokes equations.

Later, Bretherton (1964) extended Hocking’s analysis to include the first effects
of inertia. In the limit Recl � 1, he showed that an expanding cluster of 3–6
spheres is an asymptotically stable configuration for long times, and oscillations
about this state decay in amplitude owing to weakening interparticle interactions.
Similar to the inertialess case, clusters of seven or more spheres were found to be
unstable. For clusters with Recl � 1, Bretherton concluded, based on the interactions
between the O(1/r2) radial source fields of the individual particles described above,
that any polygonal arrangement would be weakly unstable. Although the Reynolds
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numbers covered in Jayaweera et al.’s experiments were larger, and the separations
between spheres smaller, than those strictly within the purview of Bretherton’s theory,
qualitative agreement between the two was still obtained, since the essential physics
governing the cluster expansion remains unaltered at O(1) values of the Reynolds
number. For similar reasons, also discussed above, we expect the analysis in this paper
to continue to describe dilute clusters even for O(1) values of Re. It must be noted
that the relative arrangement of spheres in the expanding polygonal arrays studied
by Bretherton was fixed – the particles were located at the vertices of the polygon –
and his analysis was in terms of the equations of motion for the individual particles.
In contrast, we use a continuum field model here: the particle number density field
in the evolving clusters is an unknown, and must be solved for together with the rate
of expansion.

Recently, Leshansky, Lavrenteva & Nir (2003) analysed the settling of a finite
assemblage of particles for times much longer than that taken for vorticity to diffuse
across the cluster. The cluster was assumed to be compact, being much smaller than
aRe−1/2. As exported, the first effect of inertia was O(Re). However, aside from the
usual contributions arising from the local unsteady and convective acceleration terms
in a region around the cluster of the order of its own size, and the convection of
momentum in the Oseen region at distances of O(aRe−1), the authors also found
an additional singular contribution related to the unsteadiness of the cluster stresslet
(owing to changes in its configuration) and originating at length scales of O(aRe−1/2).

Finally, we mention the work of Kojima, Hinch & Acrivos (1984) who included
inertial effects in their analysis of the experimentally observed expansion of a slender
torus-shaped drop sedimenting in a second miscible liquid. Their analysis was again
valid when the expanding torus is much smaller than O(ν/U ). The nature of the
O(Re) inertial correction to the fore–aft-symmetric Stokes velocity disturbance (in
this case, of each differential torus element) remains the same even at distances smaller
than the screening length, being directed radially outward in a plane transverse to
gravity, and thereby accounting for the observed expansion. The resulting rate of
expansion is related to the spatial dependence of the inertial velocity correction,
and therefore differs from that predicted for the clusters in our study; the O(t2/3)
growth is, of course, related to the O(1/r2) behaviour of the velocity disturbance
at distances greater than the screening length. In summary, with the exception of
Bretherton’s study of polygonal particle arrays (see Bretherton 1964), other studies
of sedimenting clusters have been restricted to the regime Rcl � aRe−1/2, wherein the
Stokes equations constitute a valid leading-order approximation for cluster evolution.

The paper is organized as follows. In § 2, we first present a qualitative description
of cluster evolution in the limit Recl � 1; this is the expected long-time scenario based
on earlier arguments. The description is based on the known far-field behaviour of
the single-particle disturbance velocity field, for small but finite Re, and at distances
greater than the inertial screening length. It is argued herein that the evolution of
initially spherical clusters, for long times, is always driven by source–field interactions;
however, there exists an initial period for smaller clusters when wake interactions
play a crucial role in reducing the dimensionality of the long-time expansion that
follows. We then derive the equation for the number density field in a sedimenting
cluster whose evolution is driven by source–field interactions. The resulting nonlinear
integro-differential equation lends itself to a similarity solution in both two and three
dimensions. In either case, it becomes possible to reduce the original problem to the
solution of a linear integral equation in similarity variables; this is done in § 3 for
a spherical cluster. The integral equation in this case is readily solved, the number
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density field within the cluster being a constant. In § 4.1, we describe the solution
in two dimensions, in which case the self-similar number density field is spatially
inhomogeneous; we merely write down the exact solution, leaving its rather involved
derivation to Appendix A. For this case, we also derive the form of the number
density field close to the centre of the cluster (§ 4.2); the number density field near the
edge of the cluster is examined in Appendix B. The asymptotics serve as a useful aid
in illustrating the physics governing the self-similar expansion in a planar cluster. The
solutions for the number density field in both three and two dimensions are used to
arrive at expressions for the corresponding cluster radii as functions of time. Finally, in
§ 5, we solve the full initial value problem for a planar cluster with a Gaussian profile
for the initial areal number density field. The numerical integration is accomplished
using the method of characteristics. The resulting number density profiles are found
to collapse well for long times when re-plotted in similarity variables, confirming
the asymptotic stability of the two-dimensional similarity solution, found in § 4, with
respect to axisymmetric initial conditions. Section 6 presents a brief summary of the
results along with some directions for future work.

2. Evolution of clusters driven by Oseen interactions
In this section, we present first a qualitative and thereafter a quantitative analysis of

the evolution of clusters driven by far-field Oseen interactions. To start, we motivate
the treatment of finite-Re pair-hydrodynamic interactions between sedimenting
spherical particles

The Stokes equations fail to provide a uniformly valid approximation for the
motion of a fluid around a sedimenting sphere. For small Re, the leading-order
Stokes velocity field decays only algebraically, being O(1/r) at large distances (r � a)
from the sphere. The inertial terms then become important on length scales equal to
or larger than O(aRe−1) (the inertial screening length). With both convection and
viscous diffusion comparably important, the inertial acceleration of a fluid element
has to be included at leading order. In the limit Re � 1, a consistent leading-order
approximation for the flow field in an unbounded domain is therefore given by the
solution of the Oseen equations:

ρ U · ∇u = −∇p + µ∇2u, (2.1)

∇ · u = 0, (2.2)

where ρ U · ∇u represents convection of the velocity disturbance by the ambient
uniform flow (in a reference frame moving with the sphere sedimenting with
velocity U). A solution, consistent with the degree of approximation in the equations
themselves, is given by (see Batchelor 1967):

ur =
Ua2

r2

[
− a

2r
cos θ − 3(1 − cos θ)r

4a
exp

{
−Re r(1 + cos θ)

2a

}

+
3

2Re

(
1 − exp

{
−Re r(1 + cos θ)

2a

})]
, (2.3)

uθ = Ua2

[
a sin θ

4r3
− 3 sin θ

4ar
exp

{
−Re r

2a
(1 + cos θ)

}]
, (2.4)

in a spherical coordinate system with its polar axis coincident with the direction of
translation. While still being linear, the Oseen equations are no longer reversible:
a reversal in boundary motion (U ↔ − U) does not reverse time (u, p ↔ − u, −p).
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Figure 2. The source–sink character of the velocity field at distances greater than the inertial
screening length ν/U .

Therefore, they do not give rise to a fore–aft-symmetric flow pattern. Although
the near-field streamlines are approximately symmetric, indicating the validity of the
Stokes approximation when r � ν/U , the velocity field for r � ν/U looks dramatically
different (see figure 2). The flow at these length scales becomes radial, as from a source
of fluid at the sphere:

ur ≈ Q

4πr2
, (2.5)

with Q =6πνa, except within a narrow wake directly behind the sphere where the
compensating inflow continues to decay as

ur ≈ − QU

6πνr
, (2.6)

similar to the inertialess limit; the radial extent of the wake grows as rwake ≈ (νz/U )1/2

with downstream distance z.
In order to obtain a representation of the inertial interactions in the limit Re � 1, to

be used in the ensuing arguments and analysis, we first note that the magnitude of the
disturbance fields, at distances of O(ν/U ) or greater, is at least O(Re) smaller than the
individual sedimenting velocities. A measure of the time required to set up the steady
Oseen field, given by (2.3) and (2.4), is the time taken for the vorticity to diffuse across
an inertial screening length, and is therefore O(ν/U 2). It may then easily be shown that
the time scale, R/Ṙ, for an increase in the separation R of a particle–pair, interacting
via (weak) source fields, is much greater than O(ν/U 2) so long as R � aRe−2/3;
the latter is, of course, true, since, for small Re, the scenario discussed above only
starts to hold when R > aRe−1 � aRe−2/3. This implies that the unsteadiness of the
fluid velocity field on account of the evolving pair geometry may be neglected. From
the particles’ equation of motion, the time scale of acceleration associated with the
source velocity field scales as (mRe/µU )1/2(R/a)3/2, m = 4

3
πρpa3 being the mass of the

particle; the inertial relaxation time of the particle, τp = (m/6πηa), remains small in

comparison provided (ρp/ρf )1/2(a/R)3/2 � 1. Since R � aRe−1, a sufficient condition

for particle inertia to be negligible is ρp/ρf � Re−3 for Re � 1. In a frame of reference
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Isotropic expansion for R0 >> Nv/U

Vertical collapse for
R0 << Nv/U

Figure 3. The differing evolution of a cluster, driven by Oseen interaction, as a function of
its initial size R0.

moving with velocity U , each particle then moves with a velocity that is the sum of
the velocity fields due to all the other particles in the cluster, each given by (2.3) and
(2.4) in the limit r � ν/U , evaluated at its centre.

Based on the expressions (2.5) and (2.6) for the far-field velocity disturbance in
the source and wake regions of a sedimenting particle, we now discuss the evolution
of an initially spherical cluster on account of Oseen interactions. The nature of the
evolution is a function of the initial cluster size (R0, say), and the number of particles
(N ). Since the volume of a single-particle wake within the cluster is O(νR2

0/U ), the
probability that a particle will find itself in the wake of any other particle is given
by the ratio of the volume of N such wakes to the initial volume of the cluster;
this is O(NνR2

0/UR3
0) ≡ O(Nν/R0U ). Clearly, if R0 � Nν/U , most particles in the

initial cluster are outside the wake of any other particle, and the evolution of the
cluster is governed primarily by repulsive source–field interactions (see figure 3). Thus,
an initially spherical cluster with R0 � O(Nν/U ) remains spherical, and its radius
increases with time. The probability of wake interactions, if small at the initial instant,
will become even smaller with increasing cluster size.

On the other hand, when R0 � O(Nν/U ), each particle is initially in the wake
of many other particles; there are, in fact, O(Nν/RclU ) such particles, Rcl being
the cluster radius at time t . Since Rcl � ν/U , this number is still much smaller
than N . Thus, each particle continues to experience an outward source flow due
to O(N) other particles, that is O(QN/R2

cl), and that, when acting in isolation,
would drive an isotropic expansion of the cluster. There is, however, an additional
inward flow in the vertical direction due to the particle wakes. Each wake gives rise
to a flow of O(QU/νRcl), so the inward flow produced by O(Nν/RclU ) wakes is
again O(QN/R2

cl); this is comparable to, and tends to offset, the source-flow-driven
expansion in the vertical direction. In fact, since this flow is always dominant in the
transverse directions, the resulting outflow in a transverse plane has to be balanced by
a net inward flow in the vertical direction. One therefore expects the wake contribution
to be greater, with the result that the aspect ratio of a cluster with R0 � O(Nν/U )
should decrease (see figure 3).
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Now if Zcl denotes the (smaller) vertical dimension of a cluster at time t , then
the cluster volume is O(ZclR

2
cl), while the wake of a single particle occupies a

volume of O(νZ2
cl/U ) inside the cluster; this implies that each particle finds itself

in the wake of O(NZclν/UR2
cl) other particles. Since the vertical velocity in each

wake is O(Qν/UZcl), the net inward flow due to wakes is again O(QN/R2
cl). On

the other hand, the smaller aspect ratio, Zcl/Rcl , of the cluster implies that the
vertical component of the radial source flow is weaker by O(Zcl/Rcl), being only
O(QNZcl/R

3
cl). Thus, once the cluster starts to flatten, the source flow becomes of a

smaller order than the wake flow in the vertical direction, and the vertical collapse
of the cluster will continue. This collapse should persist until one reaches a point
where a typical particle is no longer in the wake of any other particle. This occurs
when Zcl/Rcl ≈ O(RclU/Nν). Since the wake and source-flow contributions were of
the same order to begin with, the collapse in the z-direction should occur in a time
over which the transverse dimension of the cluster is still of the same order as its
initial value R0. This implies that the aspect ratio attained by the cluster at the end
of this collapse is O(R0U/Nν). This aspect ratio is asymptotically small in the regime
where there are many wake interactions per particle in the initial cluster. In this
flattened cluster, a typical particle no longer has a wake interaction, and the evolution
for all later times is therefore driven by source flows alone. From scaling arguments
used in the introduction, now modified for a non-spherical cluster, dRcl/dt ≈ NQ/R2

cl

and dZcl/dt ≈ NQZcl/R
3
cl for the source–field-driven expansion. These equations are

consistent with an evolution at a constant aspect ratio, so the aspect ratio remains
O(R0U/Nν) for later times.

To summarize then, provided R0 � Nν/U , one obtains an expanding spherical
cluster for all times, the expansion being due to radial source–field interactions.
A cluster of asymptotically small aspect ratio results if R0 � Nν/U ; the resulting
flattened configuration begins to expand thereafter, again on account of source–
field interactions, but now occurring predominantly in a plane transverse to gravity.
Finally, an intermediate scenario is expected if R0 ∼ O(Nν/U ); an initially spherical
cluster should, in this case, evolve into a cluster with an aspect ratio of the same order
as, but less than, unity, and subsequent evolution will again be driven by source–field
interactions. The above limits may be rewritten in terms of the cluster volume fraction,
φ ∼ Na3, and one then obtains R0 ∼ O(aRe1/2φ−1/2) for the critical size of the initial
cluster; this is illustrated in figure 1. It must be noted that the location of spherical
and planar clusters (as the relevant long-time limits) relative to the critical cluster
size is reversed when considering clusters at constant φ. Thus, it is clusters smaller
than O(Re1/2φ−1/2) which evolve into nearly planar configurations; this is, of course,
because increasing cluster size with a constant φ corresponding to an increase in N

proportional to the cube of the cluster radius.
In the next two sections, we analyse quantitatively the long-time evolution of a

cluster, in both two and three dimensions, driven by source–field interactions. Using
(2.5), we observe that the velocity at any point r ≡ (x, y) in the cluster, in a reference
frame moving with its settling velocity, may now be written as

u(r, t) =
Q

4π

∫
(r − r ′)

|r − r ′|3 n(r ′, t) dr ′, (2.7)

where n(r, t) is the number density field, denoting the number of particles per unit
area in two dimensions, and those per unit volume in three dimensions. Conservation
of the total number (N) of particles, when expressed in differential form, leads to a
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continuity equation for the number density field:

∂

∂t
n(r, t) + ∇ · (u(r, t)n(r, t)) = 0. (2.8)

In (2.7) and (2.8), we have adopted a continuum description of the discrete-particle
cluster in terms of number density and induced velocity fields: (n(r, t), u(r, t)). The
convolution integral in (2.7) results because the velocity of any differential cluster
element results from a superposition of the source velocity fields due to the remaining
part of the cluster.

We restrict consideration to cases where the number density field is independent
of angular coordinates. Symmetry arguments immediately imply that the induced
velocity at any point in such a cluster, in both two and three dimensions, only has
a radial component, and that the number density in either case is a function of the
radial coordinate alone. Equations (2.7) and (2.8) take the form

ur (r, t) =
Q

2π

∫ ∞

0

∫ 2π

0

(r − r ′ cos φ)n(r ′, t)

(r2 + r ′2 − 2rr ′ cos φ)3/2
dφ r ′2dr ′, (2.9)

∂n

∂t
+

1

r2

∂

∂r
[ur (r, t)r

2n] = 0, (2.10)

for a spherical cluster, and

ur (r, t) =
Q

4π

∫ ∞

0

∫ 2π

0

(r − r ′ cos φ)n(r ′, t)

(r2 + r ′2 − 2rr ′ cosφ)3/2
dφ r ′dr ′, (2.11)

∂n

∂t
+

1

r

∂

∂r
[ur (r, t)rn] = 0, (2.12)

for an axisymmetric planar cluster. Here, r is the radial distance from the centre of
the cluster, and φ is the azimuthal angle in a plane defined by r and r ′, the integration
having been carried out over a polar angle perpendicular to this plane; for a planar
cluster, this plane is oriented perpendicular to gravity.

3. Self-similar evolution of spherical clusters
For spherical clusters, the expression, (2.9), for the induced velocity field may

be simplified by observing that the source outflow associated with a single spherical
particle satisfies ∇ · u =Qδ(x); the conservation of mass is apparently violated because
we neglect the compensating wake inflow. For a spherical cluster with number density
n(r, t), one therefore has ∇ · u = Qn. Integrating over a spherical volume, and using
radial symmetry, we then obtain

ur (r, t) =
Q

r2

∫ r ′

0

n r ′2dr ′. (3.1)

It is readily shown that evaluation of the angular integral in (2.9) leads to the same
result. Using (3.1) in (2.10), we have

∂n

∂t
+

Q

r2

∂

∂r

[(∫ r

0

nr ′2dr ′
)

n

]
= 0. (3.2)

The absence of a characteristic length scale for the number density profile is evident in
the continuum description given by (3.2). We therefore anticipate a similarity solution,
with the number density depending only on a particular combination of space and
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time variables. Equation (3.2) may, in fact, be regarded as a nonlinear dispersion
equation with a ‘dispersion’ coefficient proportional to Q, i.e. with dimensions of
(length)3/time; this immediately suggests, as will also be shown rigorously below, a
similarity variable proportional to r/t1/3.

We now employ the standard similarity formulation, namely n(r, t) = f (t)ĝ(η̄), with
the similarity variable η̄ = r/tγ , where both the function f (t) and exponent γ will be
determined from the requirements that the total number of particles conserved, and
that the equation for ĝ which results on transforming (3.2), be entirely in terms of η̄.
On transforming, we obtain

df

dt
ĝ − γ η̄

f (t)

t

∂ĝ

∂η̄
= −f 2(t)

tγ

Q

η̄2

∂

∂η̄

[
ĝ(η̄)

∫ η̄

0

ĝ(η̄′)η̄′2dη̄′
]

. (3.3)

For a similarity solution to work, there must be no explicit time dependence in the
transformed equation, which implies an equality of t-dependence of all terms in (3.3);
thus,

df

dt
≡ f (t)

t
≡ f 2(t).

This requires f (t) ∼ (1/t) with γ still arbitrary. Thus, a similarity solution must be of
the form n= (1/t)ĝ(r/tγ ). The additional integral constraint of a constant number of
particles, N ∼

∫
nr2dr , gives γ =1/3, as expected. This immediately implies that the

mean-square size of the planar cluster grows as t2/3, since

〈r2〉 = 4π

∫
r2n(r, t)r2 dr,

= 4πt (5γ −1)

∫
η̄4ĝ(η̄)dη̄,

= Kt2/3

where the proportionality constant K =2π
∫

η̄4ĝ(η̄)dη̄ depends on the exact functional
form of ĝ; the latter, of course, entails solving equation (3.3).

We now define the non-dimensional similarity variable, η = η̄/Q1/3 = r/(Qt)1/3, and,
in addition, use ĝ = g/Q, where g(η) is now the dimensionless number density in
similarity variables (the original number density field is therefore given by n= g/(Qt)).
This then serves to absorb the pre-factor Q in (3.3), leading to the following equation
for g(η):

−g − 1

3
η
dg

dη
= − 1

η2

d

dη

[
g

∫ η

0

g(η′)η′2dη′
]

. (3.4)

Re-writing (3.4) as

d

dη
(gη3) = 3

d

dη

[
g

∫ η

0

g(η′)η′2dη′
]

, (3.5)

we observe that it has a first integral given by

gη3 = 3g

∫ η

0

g(η′)η′2dη′ + C1. (3.6)

Here, C1 is an integration constant that may be determined from the limiting form
of (3.6) for η → ∞. One expects the evolving spherical cluster to have a finite
variance at all times. Stated in similarity variables,

∫ ∞
0

gη4dη must be finite, implying

that g ∼ o(η−5) for η � 1; the term gη3 in (3.6) is thus asymptotically small for
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large η. As seen from (3.1) and (3.2), the second term in (3.6) is proportional
to the radial velocity, expressed in similarity variables, induced by a sedimenting
spherical cluster. For a compact cluster, this velocity may be approximated as
(Q/2π)

∫ ∞
0

n(r ′, t)r ′2 dr ′/r2 ≈ O(QN/r2) when r � Rcl(t), Rcl being a measure of the

cluster dimension at time t . It is therefore of O(η−2) at large distances, implying that
for large η, the second term in (3.6) is O(g/η2), again being vanishingly small. Taking
the limit η → ∞ in (3.6), we then obtain C1 = 0; alternatively, the condition may also
be seen as the requirement for a finite g at η = 0.

Setting C1 = 0, the following linear integral equation for g(η) results:

3

∫ ∞

0

g(η′)η′2dη′ = η3. (3.7)

Physically, (3.7) represents a balance, at any fixed Cartesian point, between the
outward radial velocity induced by the evolving cluster, and the virtual inward
velocity that arises in transforming to (temporally) expanding similarity coordinates.
This is, of course, a requisite for a steady solution in the transformed coordinate
system. (A variant of this physical argument – that there must be no net flux at
infinity – could also have been used to conclude that the constant of integration C1

in (3.6) must indeed equal zero.) As argued earlier, the left-hand side of (3.7), being
proportional to the induced radial velocity, must, in the limit η � 1, decay as O(η−2)
for any compact cluster. Thus, any integrable number density profile, i.e. a g(η) with∫ ∞

0
g(η)η2dη finite, will never support a cubic increase in the induced radial velocity

over an infinite range. For the equality in (3.7) to hold, one must therefore have a
finite cluster. Denoting the radial dimension of the cluster in similarity coordinates by
ηm (this translates to a time-dependent cluster size (∝ ηmt1/3) in the original variables),
one only requires (3.7) to be satisfied in the interval (0, ηm). This is evident from (3.6),
where with C1 = 0, one observes that a trivial g, as would be the case outside a finite
cluster, is also a solution.

We now wish to solve

3

∫ ηm

0

gη′2dη′ = η3 (η � ηm). (3.8)

That g = 1 solves (3.8) is immediate. Thus, the number density field in the self-similarly
expanding spherical cluster is n(r, t) = 1/(Qt). The dimensional radius of the cluster
(Rcl) at time t is easily found, since n( 4

3
πR3

cl) = N , whence we obtain

Rcl(t) =

(
3NQt

4π

)1/3

, (3.9)

= 1.651(Nνa)2/3t2/3, (3.10)

on using Q =6πνa. Thus, the dilute spherical cluster, at small but finite Re, undergoes
a slow self-similar expansion. The rate of expansion decreases with increasing time
as t−2/3, since the repulsive finite-Re interactions that drive the cluster expansion
weaken with increasing interparticle separation. A second measure of the cluster size,
the variance of the positions of all the cluster particles, may be calculated as

〈r2〉 =

∫ Rcl (t)

0

[r2n(r, t)]r2dr∫ Rcl (t)

0

n(r, t)r2dr

, (3.11)

and is given by 〈r2〉 = (3/5)R2
cl for a constant number density field.
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4. Self-similar evolution of planar clusters
4.1. The number density profile in a self-similarly expanding planar cluster

In § 2, it was argued that the initial dominance of wake interactions in spherical clusters
with radii smaller than O(Nν/U ) alters the dimensionality of the ensuing source–
field-driven expansion. The cluster rapidly deforms into a flattened configuration,
and subsequent expansion occurs in a plane transverse to gravity. The analysis in
this section is restricted to this regime, and we consider the limiting scenario of
an axisymmetric planar cluster. The predictions of the analysis are expected to be
accurate for clusters with an aspect ratio much smaller than unity (Zcl � Rcl), even
they are not perfectly planar (that is, if Zcl >O(a)). For this case, equations (2.11)
and (2.12) apply; integration over the azimuthal coordinate in (2.11) gives

ur (r, t) = − Q

2π

[∫ r

0

d

dr

{
1

r
K

(
r ′

r

)}
n(r ′, t)r ′dr ′+

∫ ∞

r

d

dr

{
K

(
r

r ′

)}
n(r ′, t)dr ′

]
,

(4.1)

for the radial component of the induced velocity field, and the following nonlinear
integro-differential equation for the areal number density field:

∂n(r, t)

∂t
=

(
Q

2π

)
1

r

∂

∂r

[
rn(r, t)

∫ ∞

0

{
d

dr

(
1

r
K

(
r ′

r

))
r ′

+

[
d

dr

(
K

( r

r ′

))
− d

dr

(
1

r
K

(
r ′

r

))
r ′

]
H (r ′ − r)

}
n(r ′, t)dr ′

]
. (4.2)

Here, H (x) is the heavyside function, and K (x) is the complete elliptic integral of the
first kind, being defined as (see Gradshteyn & Ryzhik 1965)

K (x) =

∫ π/2

0

dp√
1 − x2 sin2 p

.

Equation (4.2), governing the number density profile in a planar sedimenting cluster,
is evidently more complicated than that in three dimensions (see equation (3.2));
the complexity appears to result from the fact that the O(1/r2) source–field interac-
tions, intrinsic to three dimensions, now operate in a two-dimensional space.
Nevertheless, a similarity transformation, identical to that used in § 3, also works
in two dimensions, and we obtain n(r, t) = 1/(Qt)2/3g(r/t1/3) for the areal number
density field in the evolving planar cluster. Again, defining a normalized similarity
variable, η = r[2π/(Qt)]1/3, we obtain the following equation for the function g:

−2

3
g − 1

3
η
dg

dη
=

1

η

d

dη

[
gη

∫ ∞

0

G(η, η′)g(η′)dη′
]

, (4.3)

where G(η, η′), the integral kernel in transformed variables, is given by

G(η, η′) =
d

dη

(
1

η
K

(
η′

η

))
η′ +

[
d

dη

(
K

(
η

η′

))
− d

dη

(
1

η
K

(
η′

η

))
η′

]
H (η′ − η).

(4.4)

Arguments identical to those used in three dimensions finally lead to the following
linear integral equation for g:

−3

∫ ∞

0

G(η, η′)g(η′)dη′ = η. (4.5)
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We again conclude that g can only be non-zero over a finite range. Denoting the
upper limit of this range as ηm, it is required to solve

−3

∫ ηm

0

G(η, η′)g(η′)dη′ = η (η � ηm), (4.6)

in order to obtain the number density field in the expanding cluster. In (4.6), the kernel
G(η, η′) is of the ‘split’ type, being defined differently in the ranges (0, η) and (η, ηm):

G(η, η′) =
d

dη

(
1

η
K

(
η′

η

))
η′ for 0 � η′ < η,

=
d

dη

(
K

(
η

η′

))
for η � η′ < ηm.

Using the properties of the elliptic function K(x), in particular that its derivative,
K ′(x), behaves as 1/(1 − x) for x → 1, the kernel G(η, η′) may be written in the form

G(η, η′) = KR(η, η′) + KS(η, η′), (4.7)

where KR(η, η′) only has a weak logarithmic singularity at η = η′, while KS(η, η′),
the singular part, is proportional to 1/(η − η′) for | η − η′ | � 1. Thus, (4.6) is, in
fact, a singular integral equation of the first kind, and the integral therein must
be interpreted as a Cauchy principal value. The properties of the solutions of such
equations differ quite significantly from that known from the Fredholm theory for
regular kernels (Muskhelishvili 1992; Gakhov 1966).

The aforementioned singularity of the kernel arises due to the assumed O(1/r2)
interactions between sedimenting particles; thus, the strength of a pair interaction
diverges at infinitesimal separations at a rate faster than the O(1/r) divergence for
Stokeslets. On one hand, this divergence is clearly aphysical since the theory is only
valid for interparticle separations greater than the inertial screening length. In other
words, the assumed form of the interactions (see equation (2.5)) is not uniformly
valid in r , being inapplicable in the range r < O(aRe−1). Therefore, the interpretation
of the integral involving KS(η, η′) as a Cauchy integral physically corresponds to
eliminating the divergent short-range repulsive interactions at any point in the planar
cluster. A better interpretation emerges on relating to an actual particulate cluster
where the far-field O(1/r2) interactions, at distances larger than the inertial screening
length, must transition to a non-singular interaction in the region near r = 0 (the sub-
screening-length inertial interactions discussed earlier). Clearly, a non-zero induced
velocity field at any given point in the cluster must arise only due to asymmetric
non-singular interactions in the near-field and far-field isotropic interactions mediated
via an angular asymmetry in the number density field around the point. Isotropic
interactions due to a number density field that is radially symmetric about a given
point will not contribute to an induced velocity at that point. In our analysis, the
near-field interactions are not considered since the interparticle separation is assumed
to be much larger than the screening length; in addition, isotropic interactions obey
an inverse square law, and therefore turn out to be divergent for a planar cluster.
The Cauchy principal value interpretation then serves to eliminate the contribution
of isotropic interactions from the radially symmetric component of the areal number
density field around any given point.
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Writing the integral containing the split kernel in (4.6) as two separate integrals,
we obtain:∫ η

0

d

dη

(
1

η
K

(
η′

η

))
g(η′)η′dη′ +

∫ ηm

η

d

dη

(
K

(
η

η′

))
g(η′)dη′ = −η

3
(η � ηm). (4.8)

It is shown in Appendix A that the solution to (4.8) is of the form

g = g(0)(1 − η2/η2
m)1/2, (4.9)

with g(0) being the value of g at the centre of the cluster. This number density profile
yields an induced velocity linear in η for η � ηm. A relation between g(0) and ηm may,
in principle, be obtained by substituting (4.9), performing the resulting integrals in
(4.8), and finally, equating coefficients of η on both sides. Rather remarkably, an exact
expression for the induced velocity, in a far more amenable form, may be derived
using a perturbation expansion valid near the centre of the cluster. The simplified
equations that are found in this limit also yield valuable insight into the physics of
the planar cluster expansion. In the following subsection, we therefore solve (4.8) in a
perturbative manner in a region close to the centre of the expanding cluster (η → 0).
In Appendix B, we derive the asymptotic form of the number density field near the
edge of the planar cluster, that is, g(η) for η → ηm.

4.2. The number density profile near the centre of the planar cluster

Here, we formulate a perturbation solution for small η. To this end, it is convenient
to recast (4.8) so the η dependence of the integral on the left-hand side appears in
a more tractable form. We employ the following changes of variables: η′ = sη in the
first integral, and η′ = η/s in the second, whence (4.8) takes the form∫ 1

0

s[K(s) + sK ′(s)]g(ηs) ds +

∫ η/ηm

1

1

s
g

(η

s

)
K ′(s) ds =

η

3
. (4.10)

We assume a cluster profile of the form

g(η) = g(0) − c ηα + o(ηα), (4.11)

close to the centre, where c is a constant and the exponent α (> 0) will be determined
from the analysis. While the above expression yields a leading-order estimate for the
first term in (4.10), it is necessary to use the full expression for g(η) in the second
term. Indeed, substituting (4.11) into (4.10) yields a divergent integral. The first term
on the left-hand side in (4.10) is well-behaved for small η, the logarithmic singularity
of K(s) for s → 1 being an integrable one. The stronger singularity of K ′(s) for s → 1
does yield a logarithmically divergent integral; however, this singularity is cancelled
by an identical singularity of opposite sign in the second term which also involves
K ′(s). This cancellation is consistent with interpreting the original integral involving
G(η, η′) in (4.6) as a Cauchy principal value. Thus, the divergence arises from the
second term in (4.10) near s = 0, and may easily be seen using the small-η expansion
for g in this term:∫ η/ηm

1

1

s
g

(η

s

)
K ′(s) ds = g(0)

∫ η/ηm

1

K ′(s)

s
ds + c ηα

∫ 1

η/ηm

K ′(s)

s1+α
ds. (4.12)

Now, K ′(s) ≈ (π/4)s for s � 1; thus, replacing the lower limit in the second integral
in (4.12) by zero, this term is found to be divergent for α > 1, which is indeed the
case, and the analysis below gives α = 2 (see (4.18)). In other words, even for η → 0,
the integral involving g(η/s) depends on the detailed number density profile over the
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entire extent of the cluster and may not be approximated by the asymptotic form
(4.11). Physically, the logarithmic divergence for s → 0 that results on substituting
(4.11) signifies the non-local nature of the cluster interactions contributing to the
induced velocity in the planar cluster, as observed earlier in the introduction.

Keeping in mind therefore that the induced velocity will, even for small η, depend
on g(η) for η in the entire range (0, ηm), we rewrite the left-hand side of (4.10) as
follows:

lim
η�1

[∫ 1

0

s[K(s) + sK ′(s)]g(ηs) ds +

∫ η/ηm

1

1

s
g

(η

s

)
K ′(s) ds

]

= lim
η�1

{
g(0)

[∫ 1

0

s[K(s) + sK ′(s)] ds −
∫ 1

η/ηm

ds
K ′(s)

s

]

− c ηα

∫ 1

0

s1+α[K(s) + sK ′(s)] ds −
∫ 1

η/ηm

ds
[
g

(η

s

)
− g(0)

] K ′(s)

s

}
. (4.13)

The first term on the right-hand side of (4.13) corresponds to replacing the actual
number density profile g(η) by a top-hat profile of height g(0) and extent ηm. For
such a profile, a non-zero induced velocity results only because of its finite extent;
this may be seen explicitly by rewriting the first term in (4.13) as

g(0)

[∫ 1

0

s[K(s) + sK ′(s)] ds − lim
η�1

∫ 1

η/ηm

ds
K ′(s)

s

]
,

= g(0)

[∫ 1

0

s

{
[K(s) + sK ′(s)]s − K ′(s)

s

}
ds + lim

η�1

∫ η/ηm

0

ds
K ′(s)

s

]
(4.14)

=

(
π

4

η

ηm

)
g(0), (4.15)

on using the small-s approximation for K ′(s) in the second term in (4.14). In fact, the
first term in (4.14) corresponds to the induced velocity in an infinite top-hat cluster
and is therefore identically zero, there being no preferred centre of expansion. As
anticipated, the induced velocity is inversely proportional to ηm.

The second term on the right-hand side of (4.13) is the additional velocity resulting
from the deviation of g(η) from g(0), its value at the centre of the cluster, in the
interval (0, η). The expression (4.13) results in the limit η � 1 from approximating
this local deviation by −c ηα in accordance with (4.11); this is evidently a negative
contribution to the induced velocity since the deviation represents a reduction in the
number density (contributing to the outward repulsion at η) relative to the leading-
order top-hat approximation. The third term in (4.13) is the velocity resulting from
the deviation of g(η) from the top-hat profile in the interval (η, ηm). Except for the
region near η, this deviation may no longer be approximated by (4.11). Thus, this
term includes both a local contribution from a region near but outside the interval
(0, η), and an additional non-local contribution. In Appendix C, it is shown that

lim
η�1

∫ 1

η
ηm

ds
[
g

(η

s

)
− g(0)

] K ′(s)

s
=

π

4
η

∫ ηm

0

dw
[g(0) − g(w)]

w2
+

π

4

c ηα

(1 − α)

+ c ηα

∫ 1

0

ds
1

s1+α

(
K ′(s) − π

4
s
)

, (4.16)
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where the integral involving K ′(s) is convergent provided α < 3. Using (4.16) and
(4.15) in (4.13), the original integral equation reduces to

η

(
π

4

g(0)

ηm

+
π

4

∫ ηm

0

dw
[g(0) − g(w)]

w2

)
+ c ηα

[
−

∫ 1

0

s1+α[K(s) + sK ′(s)] ds

+
π

4(1 − α)
+

∫ 1

0

ds
1

s1+α

(
K ′(s) − π

4
s
)]

=
η

3
(4.17)

in the limit η � 1. The O(ηα) local contributions and the O(η) non-local contributions
have now been written separately in (4.17). One evidently requires α �= 1 for the
coefficient of the O(ηα) contribution to be finite. Therefore, for (4.17) to hold,

−
∫ 1

0

s1+α[K(s) + sK ′(s)] ds +
π

4(1 − α)
+

∫ 1

0

ds
1

s1+α

(
K ′(s) − π

4
s
)

= 0, (4.18)

which determines α. It may easily be shown using standard identities involving elliptic
functions (for instance, see Gradshteyn & Ryzhik (1965)) that (4.18) is satisfied for
α = 2. From (4.11), we observe

lim
η�1

g(η) = g(0) − c η2,

so the number density profile has a local maxima at η =0 with a finite curvature
proportional to c.

In addition, the above implies

π

4

g(0)

ηm

+
π

4

∫ ηm

0

dw
[g(0) − g(w)]

w2
=

1

3
, (4.19)

so the self-similar expansion of the sedimenting cluster requires that the contributions
to the induced velocity near its centre be ‘purely non-local’. The requirement that
the cluster velocity be linear in the similarity variable has the consequence that the
expression

η

(
π

4

g(0)

ηm

+
π

4

∫ ηm

0

dw
[g(0) − g(w)]

w2

)
(4.20)

for the cluster velocity, derived above in the limit η � 1 is, in fact, exact! In other
words, (4.20) is the induced velocity for any η <ηm. That the dependence of the induced
velocity on g(η) is identical for all points in the planar cluster again emphasizes the
non-local nature of the underlying hydrodynamic interactions.

4.3. Cluster size and number density profile

Using the exact solution, (4.9), in (4.19), we obtain:

π

4

g(0)

ηm

+
π

4
g(0)

∫ ηm

0

dw

w2

[
1 −

(
1 − w2

η2
m

) 1
2

]
=

1

3
. (4.21)

Note that the left-hand side of (4.21) is the exact expression for the induced velocity
derived in the previous section, namely (4.20). The integration in (4.21) is readily
performed to yield one relation,

g(0) =
8

3π2
ηm, (4.22)
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between the number density (renormalized in similarity variables) at the centre of the
cluster, η =0, and the size of the cluster. The other relation, needed to determine g(0)
and ηm, is, of course, obtained from the constancy of the total number of particles,
that is, from

2π

∫ Rcl (t)

0

n(r, t)r dr = N, (4.23)

where Rcl(t) = ηm[(Qt)/2π]1/3 is the dimensional radius of the expanding cluster. In
dimensionless terms, this becomes

2π

∫ ηm

0

g(η)η dη = N. (4.24)

Using the exact solution in (4.24), one obtains the required second relation between
g(0) and ηm:

g(0) =
3N

2π

1

η2
m

. (4.25)

From (4.22) and (4.25), we obtain

g(0) =

(
32N

3π5

)1/3

, (4.26)

ηm =

(
9πN

16

)1/3

. (4.27)

Therefore, n(r, t) ∼ O(N1/3/(Qt)2/3), and the radius of the expanding cluster is given
by

Rcl(t) = ηm[Qt/(2π)]1/3 (4.28)

= 0.655(NQt)1/3 (4.29)

= 1.743(Nνa)1/3t1/3. (4.30)

Similar to the spherical cluster, the dilute planar cluster also undergoes a slow
self-similar expansion at small Re.

Using (4.26) and (4.27), the exact solution of (4.8) is given by

g(η) =

(
32N

3π5

)1/3 (
1 − (16)2/3η2

(9πN)2/3

)1/2

. (4.31)

Thus, the areal number density profile is locally parabolic near the centre, but is
non-analytic near the edge (η = ηm) of the expanding cluster. The non-analyticity
implies that dg/dη diverges as η → ηm, and is indicative of the steepness of the
number density profile at η = ηm.

For a planar cluster, the cluster variance defined in § 3 accounts for the non-
uniformity in the areal number density, and may be calculated as

〈r2〉 =

∫ Rcl (t)

0

[r2n(r, t)]r dr∫ Rcl (t)

0

n(r, t)r dr

, (4.32)
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and in terms of similarity variables,

〈r2〉 =
1

N

∫ ηm

0

[
2π

(Qt)

]2/3

g(η)

(
η(Qt)1/3

(2π)1/3

)3

d

(
η(Qt)1/3

(2π)1/3

)

=
(2πQt)2/3

N

∫ ηm

0

g(η)η3 dη

=
2

15

(2π)2/3

N
g(0)η4

m(Qt)2/3

= 0.3168 (Qt)2/3N2/3, (4.33)

on using (4.31). Finally, with Q =6πνa (see § 2), the variance of the particle positions
takes the form

〈r2〉 = 2.244(νa)2/3N2/3t2/3. (4.34)

5. Numerical solution of the initial value problem for a planar cluster
Here, we present a numerical solution of an initial value problem which confirms

the theoretical predictions for an axisymmetric planar cluster in the previous section;
the inhomogeneous areal number density field offers a better test for the numerics. We
do not attempt a comprehensive numerical analysis; rather, the governing equations
are solved for a single canonical initial condition, an initial Gaussian profile for the
particle number density. Nevertheless, as will be seen, the collapse of the number
density profiles at various times, when plotted in appropriate re-scaled coordinates,
is strongly suggestive of a self-similar expansion regime in the limit of long times.
In addition, the asymptotic forms, close to the centre and edge of the cluster, of the
re-scaled number density profiles for long times are consistent with those found in
§ 4.2 and in Appendix B, respectively.

As in § 2, the governing equation for the number density is given by

∂n

∂t
+

1

r

∂

∂r
(rurn) = 0, (5.1)

where we have assumed axisymmetry; ur [n(r, t)] is, of course, the radial component of
the induced velocity on account of interparticle interactions, and is again a function
of n(r, t), this being the origin of the nonlinearity. Equation (5.1) may be written as

∂n

∂t
+ ur

∂n

∂r
= −

(
∂ur

∂r
+

ur

r

)
n (5.2)

and is a first-order hyperbolic equation. The temporal evolution of the number density
profiles may therefore be obtained by integrating along its characteristics, given by
r(t) =

∫ t

0
ur [n(r ′, t ′)] dt ′. Using (4.1), and a change of variables, the radial velocity may

be expressed in the form

ur =
Q

2π

∫ 1

0

ds

[
sK(s)n(rs, t) + K ′(s)

(
s2n(rs, t) − n(r/s, t)

s

)]
. (5.3)
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Now, using (5.3) in (5.2), we need to integrate the following system of equations:

dr

dt
=

Q

2π

∫ 1

0

ds

[
sK(s)n[r(t)s, t] + K ′(s)

(
s2n[r(t)s, t] − n[r(t)/s, t]

s

)]
, (5.4)

dn

dt
=

(
Q

2π

)
n

∫ 1

0

ds

[
K ′(s)

{
n[r(t)/s, t]/r + n′[r(t)/s, t]/s

s

− s2

(
n[r(t)s, t]

r
+ sn′[r(t)s, t]

)}
− sK(s)

(
n[r(t)s, t]

s
+ sn′[r(t)s, t]

)]
. (5.5)

The first equation represents the motion of a Lagrangian point r(t) along the
characteristic of (5.2) with a velocity given by (5.3), while the second describes the
temporal evolution of the number density at this propagating point. It is convenient
at this point to define dimensionless variables. We choose the initial radius of the
cluster, characterized by the variance of the initial number density profile, 〈r2

0 〉1/2, as
the length scale. The corresponding time scale is then given by (〈r2

0 〉3/2/Q), and the
resulting scale for the velocity field is (Q/〈r2

0 〉). In addition, we use (N/π〈r2
0 〉) as the

scale for the areal number density field, where N = 2π
∫

rn(r, t)dr is now the (constant)
area under the evolving number density profile; the resulting non-dimensional system
of equations is

dr

dt
=

(
N

π

)∫ 1

0

ds

[
sK(s)n[r(t)s, t] + K ′(s)

(
s2n[r(t)s, t] − n[r(t)/s, t]

s

)]
, (5.6)

dn

dt
=

(
N

π

)
n

∫ 1

0

ds

[
K ′(s)

{
n[r(t)/s, t]/r + n′[r(t)/s, t]/s

s

− s2

(
n[r(t)s, t]

r
+ sn′[r(t)s, t]

)}
−sK(s)

(
n[r(t)s, t]

s
+ sn′[r(t)s, t]

)]
, (5.7)

where we continue to use the same symbols for the dimensionless variables in the
interests of notational simplicity. The expression for the variance in the self-similar
regime derived earlier, (4.33), may now be written in the form 〈r2〉 = 0.3168N2/3t2/3

in terms of the dimensionless variables defined above. Clearly, one expects the
sedimenting cluster to asymptote to a self-similar expansion only in the limit when its
radius (〈r2〉1/2) at time t becomes much larger than the initial value (〈r2

0 〉1/2), so the
latter ceases to be a relevant length scale. Thus, N may be regarded as a parameter
that determines the duration of time required for an evolving cluster to cross over to
the self-similar regime.

The inverse dependence on r in the above equations, however, makes numerical
integration difficult for points close to the centre of the cluster. We therefore combine
(5.6) and (5.7) with suitably simplified limiting forms for small r , which is convenient
for Lagrangian points close to the centre (r =0); from symmetry, the centre of the
cluster remains a Lagrangian point for all times. The asymptotic form of (5.6) for
r → 0 has already been derived in § 4.2, being given by (4.20), and the near-field form
of (5.7) may be derived similarly. The simplified system of equations, used in the limit
of small r , is given by

lim
r→0

dr

dt
=

(
N

π

)
π

4
r

[∫ ∞

0

ds
[n(0, t) − n(s, t)]

s2

]
, (5.8)

lim
r→0

dn

dt
=

(
N

π

)
π

4
n

[∫ ∞

0

ds
n′(s, t)

s
−

∫ ∞

0

ds
[n(0, t) − n(s, t)]

s2

]
. (5.9)
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Figure 4. The number density profiles at various instants of time from t = 0 to t ≈ 44.3,
where the time is in units of (〈r2

0 〉3/2/Q); the number density field is a Gaussian at t = 0.

The numerical integration was performed using an adaptive step Runge–Kutta routine.
The integration was begun with 800 evenly spaced points in the interval r ∈ [0, 10],
the initial value of the number density at each of these points being that of a Gaussian
profile, namely e−x2

i (N = π); xi here denotes the ith Lagrangian point. The variance
of the initial Gaussian profile was 0.5, while the variance of the number density
profile at the final time step (t ≈ 44.3) is approximately 5; the aforementioned radial
interval is therefore sufficient in extent to accurately represent the evolution of the
initial profile for the range of times integrated. At every time step, one needs the
current value of the number density and its spatial gradient at the current location of
each Lagrangian point in order to predict the new values. These were obtained from
a linear interpolation between the values at the previous locations of the Lagrangian
points. Also, the values of the elliptic function K(s) and its derivative, required for the
evaluation of the integrals in (5.6) and (5.7), may be obtained from standard series
formulations (for instance, see Gradshteyn & Ryzhik 1965). The integrals themselves
were evaluated using Legendre quadrature with 500 quadrature points. As a check
on numerical accuracy, the value of

∫
n(r, t)rdr was monitored at every time step,

and was found to remain virtually unchanged during the time interval of integration;
this, of course, must be so, since the total number of particles is conserved.

Figure 4 depicts the evolution of the number density field with time starting from
an initial Gaussian profile. The profiles become progressively flatter at the centre,
and steeper toward the edge of the cluster. The analysis in § 4 suggests that the
sedimenting cluster must approach a self-similar expansion only in the limit of long
times, when the details of the initial condition are forgotten. Thus, if the proposed
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Figure 5. (a) Plots of n(r, t) as a function of r for t > 6, and (b) a plot of the re-scaled

number density field t2/3n(r, t) as a function of the similarity variable η ≡ r/t1/3.

self-similar regime indeed exists, the profiles of the number density when plotted in
appropriate re-scaled variables, namely n(r, t)t2/3 versus r/t1/3, must collapse onto a
single universal curve for sufficiently long times. This is seen in figure 5, where the
number density profiles are plotted as a function of the radial coordinate in both
the scaled and unscaled forms for t > 6; that the similarity scaling works is evident.
Figure 6 is a plot of {n(0, tf ) − n(r, tf )} as a function of r , for small r , on a log-log
scale, while figure 7 is a log-log plot of n(r, tf ) versus (rm − r); here, n(r, tf ) is the
number density profile at the final time step, tf ≈ 44.3, and rm denotes the location
of the cluster edge at this time. Since the number density profiles have increasingly
steep rims for long times, the numerical value of rm in this case is easily inferred
by inspection. Together, the plots confirm the limiting forms of the number density
profile for r → 0 (locally quadratic) and r → rm (singular slope), found in § 4.2 and in
Appendix C, respectively. In figure 6, we note that the density of Lagrangian points
falls off near the centre of the cluster, since the induced velocity at all locations is
directed radially outward and causes these points to concentrate near the edge of
the cluster for long times. However, points not too far away from the cluster centre
do conform to a local quadratic behaviour, as is evident from a comparison with a
straight line of slope 2 also shown in the figure. In figure 7, a favourable comparison
with a straight line of slope 0.5 confirms the predicted non-analytic behaviour of the
number density for → rm; note that the accuracy of the numerics drops for points
very near the edge of the cluster, as the number density profile here becomes very
steep and jagged for long times.

In figure 8, we plot the induced velocity profiles corresponding to the number
density profiles shown in figure 4 in both the scaled and unscaled forms. According

to the similarity transformation, the number density is O[t− 2
3 g(r/t1/3)] (see § 4.3),

and the corresponding induced velocity ur (r, t) will be O[t− 2
3 (r/t1/3)]. Thus, a plot of

ur (r, t)t
2/3 against r/t1/3 should cause the velocity profiles to collapse onto a single

universal curve for times when the details of the initial condition are no longer
important; this is evident in figure 8(b).

We observe that, for the initial Gaussian profile, the induced velocity increases with
distance from the centre of the cluster to begin with, since an increasing number of
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Figure 6. The points represent the values of {n(0, t) − n(r, t)} for t = 44.3, plotted as a
function of r , on a logarithmic scale; a straight line with slope 2 corresponding to a parabolic
number density profile is shown for comparison.

particles contribute to a radial repulsion. However, beyond a certain critical distance,
of the order of the variance of the Gaussian profile, the number density has decreased
to substantially smaller values. As a result, there is little change in the number of
particles already contributing to an outward repulsion; instead, owing to the decay
with distance of the source velocity field associated with any given particle, the
repulsion now becomes weaker with increasing distance from the cluster centre. The
resulting induced velocity decreases. Thus, the initial profile for the induced velocity
exhibits a maximum at an intermediate location (r ≈ 2.5 in figure 8), implying that
particles in this region move outward at a rate faster than particles further out,
eventually catching up with them. This leads to an evident steepening of the number
density profile with increasing time (see figure 4). Correspondingly, the region where
the induced velocity field increases with an increase in distance from the centre
becomes larger in extent; in addition, there is a sharper transition between regions
of increasing and decreasing induced velocity. Finally, as one approaches the self-
similar expansion regime, the number density profile has steepened to an extent, where
one may unambiguously identify a ‘cluster edge’ beyond which the number density
reduces to very small values. In turn, this leads to an almost discontinuous transition
(a ‘kink’) from the linearly increasing induced velocity up to the edge of the cluster
to a nonlinear decrease in the region beyond it. This prediction is in accordance with
theory.

Finally, we plot 〈r2〉 as a function of time. The theory predicts that 〈r2〉 ∝ t2/3 in the
regime of self-similar expansion. For the initial Gaussian profile used in the numerical
integration, the coefficient of proportionality is found to be approximately 0.67. In
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Figure 7. The points represent the values of n(r, t) at t = 44.3 plotted against (rm − r), on a
logarithmic scale, for values of r close to rm; here, rm denotes the edge of the cluster, and is
found to approximately equal 5.45 from a visual inspection of the number density profile. The
theoretical prediction, a straight line with slope 0.5, is shown for comparison.

figure 9, the curve obtained from the numerical integration appears to asymptote to
the theoretical straight line for long times, indicating an approach toward a self-similar
expansion. An unambiguous verification of the O(t2/3) scaling for the variance would
require the numerical integration to be carried out for still longer times. However, as
mentioned earlier, the increased steepness of the number density profile at the edge
of the cluster makes this unfeasible. The rapid changes in the number density in this
region limit numerical accuracy, causing the profile to become jagged for t > 44, and
the numerical integration becomes extremely time consuming; the integration was
therefore terminated at t ≈ 44.3. This may also account for appearance of ripples in
the plot in figure 9 at long times. It must be emphasized, however, that, despite the
plot of the variance of the particle positions being inconclusive in itself, all remaining
cluster characteristics are consistent with the theoretical predictions.

6. Discussion and conclusion
The theoretical analysis presented should be taken as a step towards a mechanistic

understanding of finite-Re hydrodynamic interactions between sedimenting particles.
Dilute spherical and planar clusters, dominated by source–field interactions, present
analytically tractable situations in this regard; in addition, as discussed in § 2, they
also appear to be relevant long-time scenarios. It would be of interest to extend the
analysis to study the more difficult problem concerning the evolution of sufficiently
dense sedimenting blobs where wake interactions come into play, and persist for the
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2/3 versus r/t1/3 for times t > 6, confirming the presence of a
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Figure 9. The plot of 〈r2〉, the mean-square position of the cluster particles, as a function
of t2/3. For the parameters used in the numerical integration, the theoretical prediction for a
self-similarly expanding cluster is a straight line (dash-dot line) with a slope of 0.67.

entire duration of cluster evolution. Simulations may play an invaluable role in this
regard. Along the lines of Machu et al.(2001), one may perform ‘Oseenlet simulations’
wherein the velocity disturbance due to each sedimenting particle is taken to be the
Oseen velocity field, a uniformly valid approximation for small Re. With the dynamics
thus specified, the simulation, at each time step, would simply proceed by an update
of the particle positions in accordance with the values of the velocity field at their
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respective centres. The induced velocity field at the centre of any given particle is
equal to the sum of the (Oseen) velocity disturbances due to all other particles.
Such a kinematic simulation, of course, needs only a fraction of the computational
power required for a full dynamic simulation of the Navier–Stokes equations at any
finite Re using any of the standard protocols, say, the lattice Boltzmann technique,
finite element methods, etc. However, even with the simplistic underlying physics,
kinematic simulations are expected to yield useful insights into the dynamics of large
sedimenting blobs in the dilute limit.

A kinematic simulation of a dilute suspension jet, for instance, might help account
for some recent observations by Nicolas (2002) in his experiments involving gravity-
driven dense suspension jets. Of particular interest was the change in the behaviour
of the suspension jet for Re >O(1), Re again being the Reynolds number based
on the particle size and settling velocity. The jet was found to remain uniformly
cylindrical at vanishingly small Re, and then, at slightly higher Re, underwent an
apparent instability, leading to formation of discrete blobs. Further, for Re > 1, the
particulate jet began to disperse. This dispersion, and the resulting rapid expansion in
the longitudinal direction, apparently triggered when micro-scale inertial forces first
become important, may be related to the interparticle repulsion mechanism analysed in
this paper. Such a simulation may also be used to probe aspects of the tentative phase
diagram for inertial clusters sketched out in figure 1; in particular, one may look at
transitions across boundaries demarcating different dynamical behaviour, provided the
simulations include the underlying physics in all the relevant bounding regimes. Even
for the case of sedimenting clusters dominated by source–field interactions, it would
be of interest to verify if the cluster evolves towards the axisymmetric self-similar
expansion regime even in the presence of initial non-axisymmetric perturbations.

This work was supported by NSF grant CBET-0730579.

Appendix A. Exact solution of the integral equation (4.8)
Here, we show that g(η) = C(1 − η2/η2

m)1/2 exactly satisfies (4.8). Equation (4.8)
being linear, the constant C is arbitrary. For our problem, however, g(η) is the
number density field in similarity variables, and C is therefore related to ηm via
the normalization condition. We proceed by showing that substitution of the above
expression for g(η) in (4.8) leads to an identity. Using (4.10), obtained from (4.8) after
a change of variables, it is then required to prove∫ 1

0

s[K(s) + sK ′(s)](1 − η̂2s2)1/2 ds −
∫ 1

η̂

K ′(s)

s

(
1 − η̂2

s2

) 1
2

ds = 0. (A 1)

with η̂ = η/ηm, so 0 � η̂ � 1.
The left-hand side of (A 1), after a slight rearrangement, yields∫ 1

0

[
s {K(s) + sK ′(s)} − K ′(s)

s

]
ds +

∫ η̂

0

K ′(s)

s
ds

−
∞∑

n=1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)
η̂2n

∫ 1

0

s2n+1[K(s) + sK ′(s)] ds

+

∫ 1

η̂

K ′(s)

s

[
1 −

(
1 − η̂2

s2

)1/2
]

ds, (A 2)
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where we have used the binomial series expansion of (1 − η̂2s2)1/2 in the first term
in (A 1). The first term in (A 2) is proportional to the induced velocity in an infinite
top-hat cluster, and is therefore zero by symmetry. Using the known series expansion
for the elliptic function K(s), K(s) =

∑
n= 0 ans

2n, we have K ′(s) =
∑∞

n =0 bns
2n+1 where

bn = (2n + 1)an+1 (see Gradshteyn & Ryzhik (1965)). Therefore, (A 2) may be written
as

∞∑
n=0

bn

2n + 1
η̂2n+1 −

∞∑
n=1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)
η̂2n

∫ 1

0

s2n+1[K(s) + sK ′(s)] ds

+ b0

∞∑
n=1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)

∫ 1

η̂

η̂2n

s2n
ds +

∫ 1

η̂

[K ′(s) − b0s]

s

[
1 −

(
1 − η̂2

s2

)1/2
]

ds,

(A 3)

where we have again used the binomial series expansion for [1 − (1 − η̂2/s2)1/2].
Evaluating the coefficient of b0 in the third term, we obtain

∞∑
n=0

bn

2n + 1
η̂2n+1 −

∞∑
n=1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)
η̂2n

∫ 1

0

s2n+1[K(s) + sK ′(s)] ds

+ b0η̂

∞∑
n=1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)

1

(2n − 1)
− b0

∞∑
n=1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)

η̂2n

(2n − 1)

+

∫ 1

η̂

[K ′(s) − b0s]

s

[
1 −

(
1 − η̂2

s2

) 1
2

]
ds. (A 4)

Since [1 − (1 − η̂2/s2)1/2] ∼ O(η̂2) for s ∼ O(1), and [K ′(s) − b0s]/s ∼ b1η̂
2 for s ∼ O(η̂),

the integrand in the last term in (A 4) remains O(η̂2) for all s. Thus, the second
and fourth summations, and the last term in (A 4), are all O(η̂2); their neglect yields
the induced velocity in the cluster correct to O(η̂). This was, of course, determined
earlier when evaluating the number density profile near the centre of the cluster, and
corresponds to the first term in (4.17).

More importantly, the above procedure may now be carried out in a systematic
manner to higher orders, and (A 2) may thus be ordered as an infinite series in powers
of η̂. For instance, at the next order, we obtain

∞∑
n=0

bn

2n + 1
η̂2n+1 −

∞∑
n=1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)
η̂2n

∫ 1

0

s2n+1[K(s) + sK ′(s)] ds

+ b0η̂

∞∑
n=1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)

1

(2n − 1)
− b0

∞∑
n=1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)

η̂2n

(2n − 1)

+
η̂2

2

∫ 1

0

[K ′(s) − b0s]

s3
ds − η̂2

2

∞∑
n=0

bn+1

2n + 1
η̂2n+1

+b1η̂
3

∞∑
n=2

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)

1

(2n − 3)
− b1

∞∑
n=2

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)

η̂2n

(2n − 3)

+

∫ 1

η̂

[K ′(s) − b0s − b1s
3]

s

[
1 −

(
1 − η̂2

s2

) 1
2

− η̂2

2s2

]
ds, (A 5)

where the last integral is O(η̂4).
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The complete power series may be written in the form

∞∑
n=0

bn

2n + 1
η̂2n+1 −

∞∑
n=1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)
η̂2n

∫ 1

0

s2n+1[K(s) + sK ′(s)] ds

+ b0η̂

∞∑
n=1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)

1

(2n − 1)
− b0

∞∑
n=1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)

η̂2n

(2n − 1)

+
η̂2

2

∫ 1

0

[K ′(s) − b0s]

s3
ds − η̂2

2

∞∑
n=0

bn+1

2n + 1
η̂2n+1

+ b1η̂
3

∞∑
n=2

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)

1

(2n − 3)
− b1

∞∑
n=2

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)

η̂2n

(2n − 3)
+ · · ·

+ bkη̂
2k+1

∞∑
n=k+1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)

1

(2n − 2k − 1)

− bk

∞∑
n=k+1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)

η̂2n

(2n − 2k − 1)

+
1 · 1 · 3 . . . (2k − 1)

2 · 4 . . . (2k + 2)
η̂2k+2

∫ 1

0

[K ′(s) − b0s − b1s
3 − · · · − bks

2k+1]

s2k+3
ds

− 1 · 1 · 3 . . . (2k − 1)

2 · 4 . . . (2k + 2)
η̂2k+2

∞∑
n=0

bn+k+1

2n + 1
η̂2n+1 + · · · . (A 6)

Thus, for g(η) = C(1 − η̂2)1/2 to be an exact solution, the individual coefficients in
the above infinite series must be zero. For odd exponents (η̂2k+1), this requirement
implies

∞∑
n=1

1 · 1 · 3 . . . (2n − 3)

2 · 4 . . . (2n)

1

(2n − 2k − 1)
= − 1

(2k + 1)
, (A 7)

for k =1, 2, . . . ., an identity which is easily verified numerically. Equating the
coefficient of η̂2k to zero, one obtains∫ 1

0

[K ′(s) − b0s − b1s
3 − · · · − bk−1s

2k−1]

s2k+1
ds − b0

(2k − 1)
− b1

(2k − 3)
− · · · − bk−1

=

∫ 1

0

s2k+1[K(s) + sK ′(s)] ds, (A 8)

for even exponents, or alternatively,∫ 1

0

K ′(s)

s2k+1
ds − lim

s→0

[
b0

(2k − 1)s2k−1
+

b1

(2k − 3)s2k−3
+ · · · +

bk−1

s

]

=

∫ 1

0

s2k+1[K(s) + sK ′(s)] ds, (A 9)

where the second term on the left-hand side removes the divergent part of K ′(s)/s2k+1

when integrated over [0, 1].
We prove (A 9) using the principle of mathematical induction, that is, assume (A 9)

to hold for k =m, and show the same to be true for k = m + 1. Thus, one needs to
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prove

∫ 1

0

K ′(s)

s2m+3
ds − lim

s→0

[
b0

(2m + 1)s2m+1
+

b1

(2m − 1)s2m−1
+ · · · +

bm

s

]

=

∫ 1

0

s2m+3[K(s) + sK ′(s)] ds, (A 10)

using (A 9) for k =m. We begin by using the following recurrence relation between
elliptic functions:∫

s2m+3K(s) ds =
4(m + 1)2

(2m + 3)2

∫
s2m+1K(s) ds

+
s2m+2

(2m + 3)2
[
E(s) − (2m + 3)(1 − s2)K(s)

]
, (A 11)

where E(s) = (1 − s2)[sK ′(s) + K(s)] (see Byrd & Morris 1971). Integrating by parts,
and specifying the interval for integration to be [0, 1], we obtain

∫ 1

0

K ′(s)

s2m+3
ds =

4(m + 1)2

(2m + 1)(2m + 3)

∫ 1

0

K ′(s)

s2m+1
ds − 1

(2m + 3)

− 1

(2m + 1)(2m + 3)
lim
s→1

K(s) + lim
s→0

[
4(m + 1)2

(2m + 1)(2m + 3)

1

s2m+1
− 1

s2m+3

]
K(s)

+ lim
s→0

(1 − s2)

(2m + 3)s2m+3
[sK ′(s) + (2m + 3)K(s)], (A 12)

where, in the light of (A 9), we have replaced m by −(m + 3) in (A 11). Using (A 9)
with k = m for the integral on the right-hand side, we obtain

∫ 1

0

K ′(s)

s2m+3
ds =

4(m + 1)2

(2m + 1)(2m + 3)

[∫ 1

0

s2m+1[K(s) + sK ′(s)] ds

+ lim
s→0

{
b0

(2m − 1)s2m−1
+

b1

(2m − 3)s2m−3
+ · · · +

bm−1

s

}]

+ lim
s→0

[
4(m + 1)2

(2m + 1)(2m + 3)

1

s2m+1
− 1

s2m+3

]
K(s)

+ lim
s→0

(1 − s2)

(2m + 3)s2m+3

[
sK ′(s) + (2m + 3)K(s)

]
. (A 13)

Now, using (A 11) over [0, 1], and (A 12), we obtain

∫ 1

0

s2m+1K(s)ds =
(2m + 3)2

4(m + 1)2

∫ 1

0

s2m+3K(s)ds − 1

4(m + 1)2
, (A 14)

∫ 1

0

s2m+2K ′(s) ds =
(2m + 3)2

(2m + 2)(2m + 4)

∫ 1

0

s2m+4K ′(s) ds

− 1

(2m + 2)(2m + 4)
lim
s→1

K(s) +
1

2(m + 1)
. (A 15)
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Using (A 14) and (A 15), we have

4(m + 1)2

(2m + 1)(2m + 3)

∫ 1

0

s2m+1[K(s) + sK ′(s)]ds =
(2m + 3)

(2m + 1)

[∫ 1

0

s2m+3K(s) ds

+
(2m + 2)

(2m + 4)

∫ 1

0

s2m+4K ′(s) ds

]
+

1

(2m + 3)
− (2m + 2)

(2m + 1)(2m + 3)(2m + 4)
lim
s→1

K(s).

(A 16)

On integrating by parts, we obtain

4(m + 1)2

(2m + 1)(2m + 3)

∫ 1

0

s2m+1[K(s) + sK ′(s)] ds =

∫ 1

0

s2m+3[K(s) + sK ′(s)] ds

+
1

(2m + 3)
+

2(m + 2)

(2m + 1)(2m + 3)(2m + 4)
lim
s→1

K(s). (A 17)

Using (A 17) in (A 13), we obtain after some simplification∫ 1

0

K ′(s)

s2m+3
ds =

∫ 1

0

s2m+3[K(s) + sK ′(s)] ds

+ lim
s→0

1

(2m + 1)(2m + 3)

K(s)

s2m+1
+ lim

s→0

1

(2m + 3)

K ′(s)(1 − s2)

s2m+2

+
4(m + 1)2

(2m + 1)(2m + 3)
lim
s→0

[
b0

(2m − 1)s2m−1
+

b1

(2m − 3)s2m−3
+ · · · +

bm−1

s

]
. (A 18)

Using the aforementioned power series for K(s) and K ′(s), it may easily be shown,
after some algebra involving the an and bn, that (A 18) reduces to (A 10). Now, it only
remains to show (A 9) for k = 1, whence it would follow for all positive k, thereby
completing the proof; the equality for k = 1 may easily be shown using standard
relations involving elliptic functions (for instance, see Gradshteyn & Ryzhik 1965;
Byrd & Morris 1971).

Appendix B. The number density profile near the edge of a planar sedimenting
cluster

According to (4.8), for η → ηm−, the induced cluster velocity, expressed in similarity
variables, must tend to a finite value, proportional to ηm/3, at the edge of the
cluster, with a finite positive slope. It is shown here that these twin constraints
completely specify the asymptotic form of g(η) near the cluster edge. For η >ηm,
g(η) is, of course, identically zero, the cluster being finite in extent. This kink in the
number density profile introduces a corresponding kink in the profile for the induced
velocity at the cluster edge (η = ηm). On one hand, the induced velocity must increase
linearly with η for η < ηm, and on the other, it must decrease for η >ηm, approaching
zero for η → ∞, as the repelling particles in the sedimenting cluster move further
away.

Differentiating (4.8) with respect to η, we obtain, notwithstanding multiplicative
factors of t , the following expression for the rate of increase of the induced velocity
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Ui
cl with η:

dUi
cl

dη
=

∫ 1

0

s2[K(s) + sK ′(s)]g′(ηs) ds −
∫ 1

η/ηm

K ′(s)

s2
g′

(η

s

)
ds, (B 1)

where the prime denotes differentiation, and we have used g(ηm) = 0. We rewrite (B 1)
in the form

dUi
cl

dη
=

∫ 1

0

s2K(s)g′(ηs) ds +

∫ η/ηm

0

s3K ′(s)g′(ηs) ds

+

∫ 1

η/ηm

K ′(s)

[
s3g′(ηs) − 1

s2
g′

(η

s

)]
ds. (B 2)

For g′(ηm) finite and negative, the integrand in the third term remains finite since
the singularity of K ′(s) is now offset by the factor (s3 − 1/s2) for s → 1; this term
therefore tends to zero as η → ηm. Since the first term in (B 2) remains finite in this
limit, we have

lim
η→ηm

dUi
cl

dη
≈ lim

η/ηm→1

∫ η/ηm

0

g′(ηms)

2(1 − s)
ds, (B 3)

where we have used the asymptotic form of K ′(s) for s → 1 (see Gradshteyn &
Ryzhik 1965). Thus, dUi

cl/dη diverges logarithmically for η → ηm. Physically, the
contribution to the induced velocity at any point within the cluster is dominated by
the repulsive interaction velocities due to particles at distances of the order of the
cluster size. As the point moves towards the cluster edge, the number density in its
vicinity starts to decrease; the repelling particles move further away on average, and
this decrease in the magnitude of repulsion is not compensated by a corresponding
increase in their number. The induced velocity therefore starts to decrease; it attains
a maximum for η < ηm, and decreases thereafter, approaching η = ηm with an infinite
negative slope. For increasingly flatter number density profiles (with correspondingly
steeper rims), the location of the maximum in the induced velocity approaches ηm, and
the turnover of the induced velocity close to the cluster edge becomes progressively
sharper. Evidently, number density profiles that asymptote to a finite slope at η = ηm

cannot be solutions of (4.8).
We now show that the number density profile must necessarily have the asymptotic

form limη→ηm
g(η) ≈ (1−η/ηm)1/2, for dUi

cl/dη|η = ηm
to be finite. To this end, we denote

the indefinite integrals of the terms proportional to g′(ηs) and g′(η/s) in the third
integrand in (B 2) by I1 and I2, respectively. Then, (B 2) may be written as

dUi
cl

dη
=

∫ 1

0

s2K(s)g′(ηs) ds +

∫ η/ηm

0

s3K ′(s)g′(ηs) ds + [I1]
1
s=η/ηm

− [I2]
1
s=η/ηm

. (B 4)

Both I1 and I2 are singular at s = 1; however the singularities cancel each other. As
observed earlier, this is consistent with the our interpretation of the original integral
in (4.6) as a principal value. For cases where g(η) has a singular slope at η = ηm, I1

is also singular at s = η/ηm for η → ηm; this singularity is evidently removed by the
second integral which has a singularity at its upper limit that is equal and opposite in
sign. The only remaining singularity is therefore that associated with I2 at s = η/ηm for
η → ηm. The coefficient of this singularity vanishes when limη→ηm

g(η) ≈ (1 − η/ηm)1/2.



Evolution of clusters of sedimenting low-Reynolds-number particles 97

In order to see this, we first evaluate the indefinite integral for s, η/ηm → 1

lim
s,η/ηm→1

I2 =

∫
K ′(s)

s2
g′

(η

s

)
ds

= −1

4

∫
1

(1 − s)(1 − η/ηms)1/2
ds,

= −1

4

∫
1

(1 − s)(s − η/ηm)1/2
ds. (B 5)

Using s = 1 − p and η/ηm = 1 − η̂, we have

lim
s,η/ηm→1

I2 =
1

4

∫
dp

p (η̂ − p)1/2
. (B 6)

Further, using p = η̂ sin2 κ , we have

lim
s,η/ηm→1

I2 = − 1

2(1 − η/ηm)1/2

∫
dκ

sin κ

=
1

2(1 − η/ηm)1/2
ln(cosec θ − cot θ), (B 7)

in terms of η with θ = sin−1[(1 − s)/(1 − η/ηm)]1/2. It is immediately seen that
[I2]s = η/ηm

= 0. It may, in fact, be shown that with g(η) ≈ A(1 − η/ηm)1/2 for η → ηm,
we have

dUi
cl

dη
|η=ηm

=

∫ 1

0

s2K(s)g′(ηms) ds +

[∫ η/ηm

0

s3K ′(s)g′(ηs) ds +
A

2(1 − η/ηm)
1
2

ln(1 +
√

2)

]
,

(B 8)

where the bracketed term approaches a finite value at η = ηm. According to (4.10),
the above, of course, equals 1/3. Again, the non-local nature of the interactions
implies that, while being finite, the actual value of dUi

cl/dη at η = ηm still depends
on the entire number density profile g(η) for η ∈ (0, ηm). It may be shown that for
number density profiles of the form (1 − η/ηm)α with 0<α < 1, all of which satisfy
the criterion of a singular slope at η = ηm, the rate of increase of induced velocity
diverges as (1 − η/ηm)(α−1) for η → ηm with the coefficient of the divergent term
changing sign across α = 1

2
; the velocity itself approaches a finite value in all cases.

Figure 10 shows plots of the induced velocity for values of α on either side of 0.5,
confirming our predictions: for α > 0.5 the slope diverges to negative infinity, while
for α < 0.5 the slope diverges to positive infinity for η → ηm. In the limit α → 0, the
number density approaches a top-hat profile, and the induced velocity itself diverges
logarithmically at the rim of the cluster. This divergence arises because, for the
discontinuous top-hat profile, the largest contributions to the induced velocity are
now of a local nature, stemming from particles located close to the cluster edge, and
being given by

∫ ηm
dη(1 − η/ηm)−1.

Appendix C. Limiting form of the non-local contributions to the induced
velocity in a planar cluster

As seen in § 4.2, owing to the long-range nature of the inertial hydrodynamic
interactions, the contributions to the induced velocity at any point in the cluster from
distant regions end up being comparable to those arising from its neighbourhood.
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Figure 10. The behaviour of the induced velocity for settling clusters of extent ηm with number
density profiles of the general form (1−η/ηm)α; the curves shown are for α = 0.32, 0.4, 0.5 and
0.52.

These non-local contributions are characterized, in part, by the term

−
∫ 1

η/ηm

ds
[
g

(η

s

)
− g(0)

] K ′(s)

s
, (C 1)

in (4.13). Herein, we obtain a simplified form of the above term for small η. Thus,

− lim
η�1

∫ 1

η/ηm

ds
[
g

(η

s

)
− g(0)

] K ′(s)

s
(C 2)

− lim
η�1

[∫ ηε

η/ηm

ds
[
g

(η

s

)
− g(0)

] K ′(s)

s
−

∫ 1

ηε

ds
[
g

(η

s

)
− g(0)

] K ′(s)

s

]
, (C 3)

where we have introduced a dummy parameter ε with 0 <ε < 1, so that η � ηε � 1.
One has (η/s) ∼ O(1) in the first integral, while (η/s) � 1 in the second integral in
(C 3). The aim is then to extract an ε-independent approximation in the limit η � 1;
we expect the first integral to yield an O(η) non-local term containing information
about g(η) for η in the entire range (0, ηm), and the second integral to yield an O(ηα)
local term similar to the second term in (4.13). Using s = ηv and the small-s asymptote
of K ′(s) in the first integral, and (4.11) in the second, one obtains

− lim
η�1

[∫ ηε

η/ηm

ds
[
g

(η

s

)
− g(0)

] K ′(s)

s
−

∫ 1

ηε

ds
[
g

(η

s

)
− g(0)

] K ′(s)

s

]

= − lim
η�1

[
π

4
η

∫ 1/η1−ε

1/ηm

dv

[
g

(
1

v

)
− g(0)

]
− c ηα

∫ 1

ηε

ds
K ′(s)

s1+α

]

= lim
η�1

[
π

4
η

∫ ηm

η1−ε

dw
[g(0) − g(w)]

w2
+ c ηα

∫ 1

ηε

ds
1

s1+α

(
K ′(s) − π

4
s
)

+ c ηα

∫ 1

ηε

ds
π

4sα

]
,

(C 4)
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where we have used the further change of variables w = 1/v in the first term. On
further simplification, (C 4) gives

π

4
η

[∫ ηm

0

dw
[g(0) − g(w)]

w2
− c

∫ η1−ε

0

wα−2dw

]
+ c ηα

∫ 1

0

ds
1

s1+α

(
K ′(s) − π

4
s
)

+ c

[
π

4

ηα

(1 − α)
− π

4

ηα+ε(1−α)

(1 − α)

]
=

π

4
η

∫ ηm

0

dw
[g(0) − g(w)]

w2
+

π

4

c ηα

(1 − α)

+ c ηα

∫ 1

0

ds
1

s1+α

(
K ′(s) − π

4
s
)

, (C 5)

where the integral involving K ′(s) is convergent provided α < 3.
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